
What is computer science (CS)
and why is understanding it and
computational thinking (CT)
important for future readiness?

Computer science focuses on
what’s going on inside computers,
understanding how computers
work, as well as how to efficiently
design and code the apps that run on
computers, including smartphones.

As far as future readiness is concerned,
we know that not everyone will be
a computer scientist, but everybody
is going to be interacting with
computers. We need to develop
students’ ability to speak to computer
scientists in a common language
and employ computational thinking
skills that allow them to break down
problems so computer scientists
can efficiently solve them. One of
the great things about hands-on
learning is it provides a great reminder
that you don’t need a computer
to learn computational thinking.

What are some skills and concepts
students learn through CS and CT?

A lot of people hear “computer
science” and think “Oh, that’s just
coding,” but there’s so much more
to it. Things like critical thinking that
allows students to carefully define
the problems they want to solve,
break it into smaller subproblems,
figure out what information each
subproblem needs, as well as how it
may interact with other subproblems.
Then we get right into iterative
thinking and how to test your code;
these are all part of computer
science and computational thinking.

Also, because a lot of CS and CT is
done in teams, students naturally
develop those 21st century skills
like cooperation, collaboration, and
communication at the same time.

Why is computational thinking
an important skill? How does
it support future learning
and career development?

Computational thinking skills
are as foundational as math
and language arts. Each area
teaches students specific content
while simultaneously teaching
critical skills such as problem
solving, teamwork, critical
thinking and communication.

The computational thinking
approach to breaking a problem
into smaller pieces comes from the
perspective of making it possible
for a computer to do the work.
Computational thinking also teaches
students how to make connections
by taking a specific solution and
generalizing it to work on new
problems. This approach helps with
attacking other projects, whether
that’s planning a road, solving a math
problem, writing a paper, or following
a recipe, these are all tasks that
require thinking from the top down.
What’s the big thing I want to convey?
How do I split it into smaller, key
concepts? What tools have I already
developed, and which can I reuse?

Suppose you’re managing multiple
building projects. What are the
stages? Do you need to plan each
one from scratch or can you develop
general procedures? In other words,
what has been solved already?

Likewise, if your recipe calls for
sautéing carrots, and you already
know how to sauté onions, you
can expand your “how to sauté
onions” algorithm and now your
carrot problem has been solved!

How easy is it for teachers to
illustrate real-world application
of these skills in a way that is
relevant for students’ daily lives?

It’s about the lens you teach through
and making concepts relevant to
the students’ daily lives. So, for
this generation of students, that
could be anything from how apps
are developed for your phones to
big picture issues like sustainability
and the environment. What kinds
of solutions can we come up with
to eliminate or clean up waste?
Passions can be another entry
point; think about music, we can
explore what music looks like on a
computer by introducing students
to the relationship between the
frequency of a sound and its pitch.

What does hands-on computer
science look like? How can it play
a role in getting students excited
about CS and STEAM learning?

To me, hands-on computer science
is simply about showing students
how they can do interesting,
meaningful things using computers.

One of the firs t things students learn
about coding is “if/else” situations.
If this, do one thing. Otherwise, do
something else. That concept is
fundamental to computer science.
When I started teaching this
concept, we’d write a program
about who can vote. If you’re over
18, you can vote. Otherwise, you’ll
be able to vote in five years, or
whenever. But that isn’t exactly a

topic that gets students excited.

However, you can teach the if/else
concept by having students take a
goofy selfie in front of a green screen,
then find another picture to merge
with it. Maybe someone chooses a
shark with its jaws open. Maybe it’s a
photo from a soccer game. To merge
the two pictures, the students write
code that checks every pixel in their
goofy image. If the pixel is green, they
replace it with the corresponding
picture’s pixel; otherwise, they
leave their photo alone. In the end,
a student might wind up being eaten
by a shark or scoring the winning
goal in the World Cup. Students are
learning the same concepts, but
they’re so much more motivated
when it’s a fun, interesting activity.

You can teach that same if/else
concept using engineering design.
Let’s say I want my model to follow
me in a straight line, always 25 inches
behind. My model has a sensor to
tell how far it’s trailing something.
So, I write that if there’s nothing
in front, it should drive slowly.
But if there’s something less than
25 inches ahead, it should stop.

So if I’m walking along, and the
model is driving and measuring,
driving and measuring, but then
stops because it notices something
25 inches in front, that’s because I’ve
stopped. While stopped, it keeps

measuring and starts moving when
it no longer detects something 25
inches in front. That’s because I’ve
resumed walking. It looks brilliant,
but it’s just following the steps or
the directives it has been given.

That is another activity exploring
the same if/else concept, but again,
much more interesting than seeing if
you’re old enough to vote. That’s what
I call hands-on computing—doing
something you can see, something
concrete and meaningful to you.

How do skills developed in
CS contribute to students
b e co m i n g we l l - ro u n d e d
learners and problem-solvers?

Once a student understands the
fundamental building blocks of
computer science, it helps them to be
able to break up a problem to make
it more manageable. And that’s a skill
they can apply across any subject.

Consider writing code; for each piece,
you need to figure out how to tell
the computer exactly how to do it
step by step, using language that the
computer understands. It’s all about
problem solving and writing clear
instructions. I like to think of a computer
as a child who takes everything you

say very literally. You ask a child to
wait a minute, and they start counting

“one-Mississippi, two-Mississippi...”
all the way up to 60. It’s not what
you meant, but it is what you said.

For any K12 educators looking
to incorporate CS into their
curriculum, how would you
recommend getting started?

They should join CSTA, the Computer
Science Teachers Association,
which has free basic membership
and excellent resources. I strongly
recommend using curricula
that align with CSTA standards.

I often call educational robotics my
Trojan Horse approach to teaching
computer science. When you walk
into a classroom with a robot, you
instantly have the attention of students.
I recommend looking for solutions that
offer projects and curricula that align
with the CSTA standards, and that
are robust enough for classroom use.

No matter what approach you use,
there hasn’t been a better time to
jump into the world of computer
science and computational thinking!

To learn more, go to
www.legoeducation.com

LEGO and the LEGO logo are trademarks and/or copyrights of the LEGO Group.
 ©2023 The LEGO Group. All rights reserved. Produced by District Administration

Q&A with Jennifer S. Kay, Ph.D., Computer Science and Educational Robotics Expert,
LEGO® Education Trainer, and Professor of Computer Science, Rowan University

The Case for Computer Science: Equipping
Students and Teachers with Future-Ready Skills

“Once a student
understands the
fundamental building
blocks of computer
science, that’s a skill
they can apply across

any subject.”

https://www.legoeducation.com

