SPIKE™ Prime Set

# Time for Squat Jumps

Graph potential energy at the maximum height of a jump.

30-45 min.

## Prepare for Blended Learning

### (Before the Lesson)

• If you feel that it is necessary, plan a lesson using the getting started material in the app. This will help to familiarise you and your pupils with SPIKE Prime.

• You might wish to consider:

• Choosing the right tool(s) and the right place. For example, watching videos, reading a textbook or preparing for a hands-on experience can easily be done at home. Performing the experiment and collecting data ‘hands-on’ is easier in a classroom setting.
• Using a variety of tools and allowing for broad differentiation. This will increase your pupils' engagement and improve their learning outcomes.
• Providing various methods of virtual collaboration. Here are some examples:
• Videoconferencing
• Blogs, chats or wall posts
• Digital versions of pupil worksheets
• Adapting the lesson flow to account for not being in a classroom setting throughout the entire lesson. We have provided an example lesson flow below.

• Here are some other ways you can adapt the lesson flow to suit your pupils’ needs:
• Have your pupils watch the videos describing what they are about to do. You can point them to the SPIKE App or use the pupil worksheet URL.
• Provide other material that you have already prepared on this topic.
• Customise the Inventor Notebook to have your pupils prepare their learning experience and reflect on their findings (please see Additional Resources).
• Use the lesson brief (a printable 1-page lesson overview) to inspire your pupils with an open-ended challenge (please see Additional Resources).

## Engage

### (Before Class, 20 Min.)

• This lesson explores potential energy. The equation for potential energy is Ep=mgh. The value of ‘g’ is known, and ‘m’ can be found or approximated. The unknown variable in this lesson is the height of a jump, which your pupils will measure. They will start by using the Distance Sensor pointing downward to measure their maximum distance from the ground as they jump (make sure that they are on a flat surface). Later on, they will explore other methods using the Hub's Acceleration Sensor.

Ignite a Discussion

Start a discussion by asking questions related to the lesson. Here are a few suggestions:

• What is potential energy?
• How high can you jump?
• How much (potential) energy is that?

Have your pupils write down their thoughts as a hypothesis.

## Explore

### (During the Lesson, 30 Min.)

• Have your pupils build a kettlebell that can record jump-related data. They can create their own models or follow the building instructions in the app to build the Kettlebell model.
• Ask your pupils to try out their models using the suggested program.
• Ensure that they control their jumps, pointing the kettlebell straight towards a smooth surface (i.e. avoiding rugs or carpets).

## Explain

### (During the Lesson, 15 Min.)

• Allow your pupils some time to adjust their programs to improve their performance.
• Encourage them to record as much data as possible during their experiments.
• Have them export their data as a CSV file so that they can manipulate it using other software if they wish.

## Elaborate

### (After the Lesson, 25 Min.)

• If your pupils still have access to their SPIKE Prime Sets, have them complete the tasks given in the SPIKE App. This will help them to elaborate on their learning with a bit of hands-on activity. Here are some examples:
• Ask them to jump with more mass (e.g. while wearing a rucksack) and then describe their potential energy when jumping with the rucksack as compared to without it.
• If your pupils do not have access to their sets, have them complete their Inventor Notebooks, or assign one of the extension activities that has been suggested below. Most of the extension activities can be done using the data that was collected during the hands-on session
• Facilitate a sharing session in which your pupils exchange information. This can be done using whichever method/tool is the most efficient (i.e. in-person or online).

## Evaluate

• Give feedback on each pupil's performance.
• To simplify the process, you can use the assessment rubrics that have been provided.

## Assessment Opportunities

Teacher Observation Checklist
Establish a scale that suits your needs, for example:

Partially accomplished
Fully accomplished
Overachieved

Use the following success criteria to evaluate your pupils' progress:

• The pupils can program a device that logs data on a line graph.
• The pupils can interpret the values coming from the line graph.
• The pupils can explain potential energy in their own words, drawing accurate connections to mass and height.

Self-Assessment
Have each pupil choose the brick that they feel best represents their performance.

• Blue: I am able to graph data using the program that has been provided in the app.
• Yellow: I am able to create my own line graph and explain my results.
• Violet: I have created new experiments on my own.

Peer Feedback

Encourage your pupils to provide feedback to one another by:

Having one pupil use the coloured brick scale above to score another pupil’s performance.
Asking them to present constructive feedback to one another so that they can improve their group’s performance during the next lesson. This is an excellent opportunity to use videoconferencing tools or blog posting tools in a blended learning scenario.

## Differentiation

Simplify this lesson by:

• Asking your pupils to recreate the experiment using only the Hub (and possibly the Distance Sensor)
• Making sure that your pupils have adjusted the program that has been suggested in the SPIKE App to match the configuration of their models
• The data should be relevant for logging acceleration values as long as the Hub is held perpendicular to the ground

Take this lesson to the next level by:

• Asking your pupils to find other ways to determine the height of a jump, for example:
• Using the Hub's Acceleration Sensor
• Using a video of their jump(s)
• Using only time

## Tips

Building Tips

Coding Tips
This lesson is designed to be played in Download Mode. The Download Mode allows for a higher sample rate of data collection by the Hub. This means that the line graph has a better resolution. It also means that the data set must be imported after the program has been stopped.

Using the Stop Block to Automatically Transfer Data Sets
If your device is connected via Bluetooth, using this block will end your program and trigger the collected data sets to be uploaded from the Hub to your device. If you are using a USB connection, you must manually upload the data sets to your device.

Main Program

Science Data Tips
Here is an example of the data your pupils can expect from this experiment.

## Extensions

Maths Extension

To incorporate the development of maths skills:

• Instead of using the Distance Sensor to directly log the distance between the bottom of the kettlebell and the ground, ask your pupils to use acceleration values to find the height of the jump.
• Have your pupils use both methods (i.e. directly measuring the distance, and calculating it based on acceleration values) to find the potential energy. Then ask them to describe which method they thought was the hardest or the most efficient, and why.

Note: This will require additional time.

Language Arts Extension

To incorporate the development of language arts skills:

• Ask your pupils to write a short explanation explaining what happens when someone jumps. Have them research muscular strength and biomechanics, then compare human jump performance to that of different animals.
• Have your pupils investigate a robot prototype that can jump, then write an essay describing how its engineers have tried to replicate muscular impulse.

Note: This will require additional time.

The pupils who enjoyed this lesson might be interested in exploring these career pathways:

• Therapeutic Services
• Engineering & Technology

## Teacher Support

The pupils will:

• Explore ways of measuring the height of a jump
• Use this value to calculate potential energy

LEGO® Education SPIKE Prime Set
Device with the LEGO Education SPIKE App installed

ACSIS125
Collaboratively and individually plan and conduct a range of investigation types, including fieldwork and experiments, ensuring safety and ethical guidelines are followed.

ACSSU155
Energy appears in different forms, including movement (kinetic energy), heat and potential energy, and energy transformations and transfers cause change within systems.

ACMNA208
Solve problems involving direct proportion. Explore the relationship between graphs and equations corresponding to simple rate problems.

ACMNA193
Plot linear relationships on the Cartesian plane with and without the use of digital Technologies.

ACMNA194
Solve linear equations using algebraic and graphical techniques. Verify solutions by substitution.

ACMNA178
Given coordinates, plot points on the Cartesian plane, and find coordinates for a given point.

ACELY1725
Plan, draft and publish imaginative, informative, and persuasive texts, selecting aspects of subject matter and particular language, visual, and audio features to convey information and ideas.

ACELY1723
Use comprehension strategies to interpret, analyse and synthesise ideas and information, critiquing ideas, and issues from a variety of textual sources.

ACTDIP028
Design the user experience of a digital system, generating, evaluating, and communicating alternative designs.

ACTDEP036
Generate, develop, test, and communicate design ideas, plans and processes for various audiences using appropriate technical terms and technologies including graphical representation techniques.

## Pupil Material

### Student Worksheet

Download, view or share as an online HTML page or a printable PDF.